PROJECT 1

Goal: Hybrid machine learning and inverse modeling for gas leakage detection based on observational data
» Characterizing gas source strength (qs), properties (v, D) and locations

» Reconstructing gas concentration profile in time and space

Results: Reduced the cost of monitoring and number of detectors

Partnership: Australian National Low Emissions Coal Research & Development, Canberra, Australia

Methods: Machine learning, Inverse Modeling, K-means and genetic algorithm clustering, Web scraping,
Non-negative matrix factorization, Non-linear least square minimization, Analytical solution

Fig 1. Test setup representing
detectors and source in
headspace of a monitoring

well.
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A non-linear least square procedure, Levenberg—Marquardt
algorithm, is used for minimization of cost function O which
gives the optimal properties for the gas source. Python and
Matlab were used.
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Fig 3. Time evolution of gas
concentration profiles. Time increases
from blue (t=0 s) to pink (t= 8000000 s).

Fig 2. Comparison between
concentration profiles using my
approach (solid lines) for two detectors
and observational data (red markers).
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PROJECT 2

PROJECT 3

Goal: Reservoir monitoring data management

Results: Draw meaningful insights from 370 Gb of data.
»Reduced the time and cost of data processing.

»Fully interactive visualizations and reservoir surveillance
based on the real-time data

Partnership: Hilcorp Energy Company

Methods: C++ source code was deveIoPed to process
temporal variance of the data, Data-quality management,
Data cleansing, Data sampling, streaming and visualization

transformation

interpretation, Matla

Goal: Detection of salt precipitation based on time-lapse well log data
in injection and monitoring wells.

Results: A novel approach was developed based on cross-wavelet

Partnership: U.S. Department of Energy

Methods: Fractal analysis, Cross-wavelet transformation
Carlo simulation, Exgl%)raltgry data analysis, Petrophysical data
oolboxes
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Fig 1. Pressure evolution in five wells.
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Fig 2. Time-lapse petrophysical data. a)
Gamma (y) ray log, b) Porosity (¢), c) Sigma
(%), d) Probability distribution of porosity and e)
Sigma. Injection interval is shown in gray on
gamma log. Yellow color indicates the intervals
with salt buildup.

Fig 3. Time-lapse cross-wavelet coherence

between porosity and Sigma. Top: The
connections between ¢ and X for 2009 (a),
2010 (b) and 2014 (c). The thick black contours
encloses the 5% significance level against red
noise which indicates the notable coherence
regions between ¢ and X . Bottom: Phase-
angle histograms between ¢ and X at regions
enclosed by thick black counters.
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PROJECT 4

Goal: Stochastic Seismic Inversion Using Tensorflow

Fe?ults: A fast, GPU-based stochastic seismic inversion
00

Method: Tensorflow-gpu, python, Texas advanced
computing center (anQ(JllpA\/\;)é/)t

| am presenting this work in 2019 Rice Oil & Gas HPC
Conference

http://rice20190ghpc.rice.edu/program/
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Fig 1. Algorithm for stochastic seismic -

inversion.

Seismic data denoising using curvelet transformation

Analyzing petrophysical data using wavelet
transformation

GPU-based pore-scale simulation of evaporation,
salt precipitation and reaction in porous media

Molecular dynamic simulation of nucleation of salt
crystals in clay minerals

Personal projects:

My personal website hosted by AWS (Html, CSS,
Java, D3.js, JISON):

http://www.hdashtian.com

PhD research:

http://hdashtian.com/research.html

Some cool data visualization:

http://hdashtian.com/levyflight.html

http://hdashtian.com/realnetwork.html
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